$latex i\hbar\frac{\partial}{\partial t}\left|\Psi(t)\right>=H\left|\Psi(t)\right>$
$latex x=\frac{1+y}{1+2z^2}$
$latex x=\frac{1+y}{1+2z^2}$
$latex \int_0^\infty e^{-x^2} dx=\frac{\sqrt{\pi}}{2}$
$latex
\frac{1}{\displaystyle 1+
\frac{1}{\displaystyle 2+
\frac{1}{\displaystyle 3+x}}} +
\frac{1}{1+\frac{1}{2+\frac{1}{3+x}}}
$